Name \qquad Class \qquad

REVIEW

6 SECTION 6.3

Acids, Bases, and pH

1. Classify each of the following substances as acidic, basic, or neutral:
\qquad a. a dilute solution of vinegar in water, which has more $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
b. soapy water with a lower $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration than OH^{-}ion concentration
c. a solution with an equal concentration of hydronium ions and hydroxide ions
\qquad d. a bitter liquid, $\mathrm{pH}=8$
\qquad e. pure water, $\mathrm{pH}=7$
\qquad f. a tart solution of mixed citrus juices, $\mathrm{pH}<7$
2. Write the balanced chemical equation that describes the ionization of nitric acid, HNO_{3}, in water.
3. Write the balanced chemical equation that describes the dissociation of the strong base magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, in water.
4. Compare the two kinds of bases, and give an example of each type.
\qquad
\qquad
\qquad
5. Compare the acidity of three solutions having pH values of 2,3 , and 6 .
6. Write the balanced equation for the reaction between water solutions of nitric acid, HNO_{3}, and magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$.
