\qquad Class \qquad
REVIEW

5 SECTION 5.3

Balancing Chemical Equations

1. Balance the following equations:
a. $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}$
b. $\mathrm{Fe}(\mathrm{OH})_{3} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
d. $\mathrm{Al}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Cu}$
e. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$
2. Determine the mole ratio for the following reaction: carbon and oxygen react to form carbon monoxide, CO.
\qquad
\qquad
3. Determine the number of moles of sodium hydroxide, NaOH , produced when 2 mol of sodium and 3 mol of water react to form sodium hydroxide and hydrogen gas, H_{2}.
\qquad
\qquad
4. Calculate the mass of carbon monoxide, CO , that was needed to produce 78 g of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, by the following reaction: $2 \mathrm{H}_{2}+\mathrm{CO} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$.
\qquad
\qquad
5. Demonstrate that the following chemical equation illustrates the conservation of mass in chemical reactions: $3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
\qquad
\qquad
\qquad
