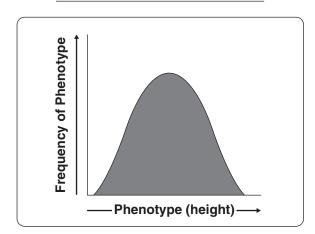
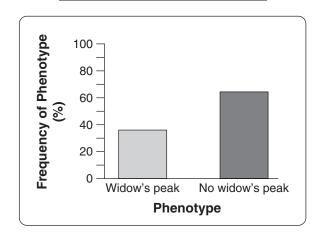

Name	Class	Date
Chapter 16 Evolution	of Populations	
Section 16–1 Ge	nes and Variation (pag	es 393–396)
TEKS FOCUS: 6C Signi in plants and animals	ficance of changes in DNA; TEKS SUF	PPORT: 6D Compare genetic variation
This section describes the m It also explains how phenoty	ain sources of heritable variation in ypes are expressed.	a population.
Introduction (page 393	3)	
ě .	nce true or false? Mendel's work	on inheritance was published
*	factors was Darwin unable to ex	
How Common Is Go	enetic Variation (page 393)	
3. All organisms have ad because it involves sm	ditionalall differences in biochemical pro	that is "invisible" ocesses.
Variation and Gene	Pools (page 394)	
4. A group of individuals	s of the same species that interbre	eed is a(an)
5. All of the genes in a po	opulation are called a(an)	
	nce true or false? A gene pool typ	ically contains just one allele for
7. The number of times t	hat an allele occurs in a gene poo	ol compared with the number of
times other alleles for of the allele.	the same gene occur is called the	

Sources of Genetic Variation (pages 394–395)

8. Complete the concept map.


- 9. What is a mutation? _____
- **10.** Why do mutations occur?
- 11. Circle the letter of each choice that is true about mutations.
 - a. They do not always change an amino acid.
 - b. They always affect lengthy segments of a chromosome.
 - c. They always affect an organism's phenotype.
 - d. They always affect an organism's fitness.
- **12.** Is the following sentence true or false? Most heritable differences are due to gene shuffling that occurs during the production of gametes. _____
- **13.** Circle the letter of each choice that is true about sexual reproduction.
 - **a.** It is a major source of variation in many populations.
 - **b.** It can produce many different phenotypes.
 - c. It can produce many different genetic combinations.
 - **d.** It can change the relative frequency of alleles in a population.


Single-Gene and Polygenic Traits (pages 395–396)

- **14.** Is the following sentence true or false? The number of phenotypes produced for a given trait depends on how many genes control the trait. ______
- 15. Is the following sentence true or false? Most traits are controlled by a single gene.

0
Pearson
Education,
<u>.</u>
rights
reserved
é

16. Label the two graphs to show which one represents a single-gene trait and which one represents a polygenic trait.

Reading Skill Practice

When you read about related concepts, making a graphic organizer such as a Venn diagram can help you focus on their similarities and differences. Make a Venn diagram comparing and contrasting single-gene and polygenic traits. For more information on Venn diagrams, see Appendix A of your textbook. Do your work on a separate sheet of paper.