Section 12–5 Gene Regulation (pages 309–312)

This section explains how some genes in prokaryotes and eukaryotes are controlled.

Introduction (page 309)

1. Label the parts of a typical gene in the diagram below.

© Pearson Education, Inc. All rights reserved

9. Complete the concept map to show how the *lac* operon is regulated.

- 10. How does the repressor protein prevent transcription?
- **11.** How does lactose cause the *lac* operon to turn on? _____
- **12.** Circle the letter of each sentence that is true about gene regulation in prokaryotic genes.
 - **a.** The *lac* operon is the only example of genes regulated by repressor proteins.
 - **b.** Many other genes are regulated by repressor proteins.
 - c. Some genes are regulated by proteins that enhance the rate of transcription.
 - d. Cells cannot turn their genes on and off as needed.

Eukaryotic Gene Regulation (page 311)

13. Is the following sentence true or false? Operons are frequently found in eukaryotes.

14. How are eukaryotic genes usually controlled?

Na	me Class Date	
15.	What is the function of the TATA box?	
16.	Eukaryotic promoters are usually found just the TATA box, an	ıd
17.	they consist of a series of short sequences. List three ways in which proteins that bind to enhancer sequences of a gene can wo to regulate gene expression	rk
	a b	
18.	Why is gene regulation in eukaryotes more complex than in prokaryotes?	
De 19.	evelopment and Differentiation (page 312) What role do the hox genes play in the development of an organism?	
20.	Circle the letter of each sentence that is true about hox genes.	
	a. A mutation in a hox gene has no effect on the organs that develop in specific par of the body.	ts
	b. In fruit flies, a mutation affecting the hox genes can replace a fly's antennae with pair of legs.	а
	c. The function of the hox genes in humans seems to be almost the same as it is in f flies.	ruit
	d. A copy of the gene that controls eye growth in mice does not function in fruit flie	es.
21.	Why do common patterns of genetic control for development exist among animals?	